Evaluating supervised classification methods in urban environments using UAV images

Mariana Sarah Suica Torres, Rhassanno Caracciollo Patriota, Tiago Fernando de Holanda, Deniezio dos Santos Gomes

Resumo


The use, commerce and technological development of Unmanned Aerial Vehicles (UAV’s) is advancing every year with different proposals and applications in different fields of Science. Not too many years ago, aerial studies depended exclusively on images taken from airplanes and images derived from satellites, which usually represent high cost. Image classification allows the production of thematic maps and also allows the user to create an image with well distinguished classes with a good level of accuracy. In the 00’s this process was mainly used in satellite images, but with the expansion of the UAV, new processes and techniques are starting to develop along. This article had the purpose of testing the accuracy of classification through kappa and tau statistics using different classifiers (Maxver, Maxver-ICM and Euclidean Distance) in aerial images, two with a short number of details and better distinguished classes and an orthophoto containing a high number of features.

DOI


Palavras-chave


UAV; Image Processing; Supervised classification

Texto completo:

PDF (English)

Referências


Abburu, A. S. Golla, S. B. (2007). Satellite image classification methods and techniques: A review. International journal of computer applications, v. 119, v. 8.

Borges, R. O. Silva, R. A. A. (2007). CASTRO, S. S. Utilização da distância euclideana no mapeamento dos focos de arenização no setor sul da alta bacia do Rio Araguaia. Brazilian Symposium of Remote Sensing, p 3777-3784.

Campos, W. Gaspar, J. Lage, M. O. Kawashima, R. S. Gianotti, M. A. Quintanilha, J. A. (2016). Avaliação de classificadores de imagem de satellite a partir do uso de uma técnica de votação. Revista Brasileira de Cartografia, n.68.

Chodoronek, M. (2015). The use and application of photogrammetry for the in-field documentation of archaeological features: Three case studies from the great plains and southeastern Alaska. Master Thesis, University of Nebraska.

Douglass, M., Lin, S., & Chodoronek, M. (2015). The application of 3D photogrammetry for in-field documentation of archaeological features. Advances in Archaeological Practice, 3(2), 136-152.

Fonseca, L. M. G. (2000). Processamento digital de imagens. INPE.

Kalra, K. Goswami, A. K. Gupta, R. (2013). A comparative study of supervised image classification algorithms for satellite images. International Journal of Electrical, Electronics and Data Communication, ISSN: 2320-2084.

Körting, T. S. Fonseca, L. M. G. Castejon, E. F. Namikawa, L. M. (2014). Improvements in Sample Selection Methods for Image Classification. Remote Sens..

Mather, P. M. (1987). Computer processing of remotely-sensed images: an introduction. Chichester: John Wiley. 360 p.

Silva, V. M. (2014). Classificação de Imagens por Sensoriamento Remoto: Análise Comparativa das Metodologias Pixel-a-Pixel e Segmentação por Região. UFMG.

Wojtaszek, M. V., & Vécsei, A. K. E. (2012, March). Comparison of Different Image Classification Methods in Urban Environment. In International Scientific Conference March (Vol. 26, p. 27).


Apontamentos

  • Não há apontamentos.


Revista Brasileira de Sensoriamento Remoto | ISSN: 2675-5491

CC-BY 4.0 Revista sob Licença Creative Commons
Language/Idioma
02bandeira-eua01bandeira-ingla
03bandeira-spn